Considerations for Influenza Policy

Kathleen Neuzil, MD, MPH
Vaccine Development Global Program, PATH
Departments of Medicine and Global Health, University of Washington School of Medicine, Seattle, WA

May 10, 2011

Objectives

• To understand the complexity of influenza vaccine policy
 • Unique characteristics of the vaccine
 • Delivery challenges
• To discuss tools and strategies that might facilitate better influenza prevention.
Why is delivering influenza vaccine so challenging?

- Influenza vaccine given every year.
- Influenza vaccine given on a seasonal schedule.
- Three different types of influenza vaccines licensed in US: TIV, LAIV, high-dose
- Vaccine supply and distribution: timing and availability of influenza vaccine uncertain.
- Need 2 doses in children the first year they receive vaccine.
- No vaccine licensed for children younger than 6 months
- Public perception.

Delivery challenges: low vaccination rates

CDC. Influenza Vaccination Coverage Among Children and Adults — United States, 2008–09 Influenza Season. MMWR 2009;58:1091-5

Goal: To prevent influenza virus infection and its complications

Need to consider factors related to disease, vaccine and implementation.

- Disease burden.
 - Absolute measure.
- Vaccine effectiveness
 - Relative measure.
- Vaccine safety
- Cost-effectiveness.
- Vaccine supply.
- Feasibility of sustained implementation.

*Preliminary data from 2007-08 influenza season
How can improved influenza prevention be accomplished?

• New strategies (e.g. higher coverage)
• New tools (e.g. better vaccines)
Evolution of seasonal influenza vaccination recommendations

Pre-2000: Persons aged 65 or older
- Persons with chronic medical conditions that make them more likely to have complications of influenza
- Pregnant women in the second or third trimester
- Contacts (household and out of home caregivers) of the above groups
- Health care workers

2000: Adults 50 and older

2004: Children aged 6 through 23 months
- Contacts (household and out of home caregivers) of children aged 0 through 23 months
- Women who will be pregnant during influenza season

2006: Children aged 6 through 59 months
- Contacts (household and out of home caregivers) of children aged 0 through 59 months

2008: All children 6 months through 18 years, if feasible

2009: All children 6 months through 18 years

2010: All persons 6 months and older

Decision to vaccinate young children

- Influenza is a nonspecific clinical disease.
- Manifestations and impact vary by age and risk group.
 - Youngest children at highest risk for serious disease.
 - Older children have significant outpatient illness, antibiotic use, missed school.
- Deaths are rare in children, but do occur.
- Efficacy is moderate in the youngest age groups.
Number of days from influenza onset until influenza-associated death: United States, 2004-2007

New Recommendations, 2004-2006
Advisory Committee on Immunization Practices

<table>
<thead>
<tr>
<th>Program</th>
<th>Age Group</th>
<th>$/QALY*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotavirus</td>
<td>Infants</td>
<td>Cost saving</td>
</tr>
<tr>
<td>Pertussis</td>
<td>Adolescents</td>
<td>20,000</td>
</tr>
<tr>
<td>HPV</td>
<td>Adol girls</td>
<td>24,000</td>
</tr>
<tr>
<td>Influenza</td>
<td>2-4 yrs, non-high-risk</td>
<td>25,000</td>
</tr>
<tr>
<td>Hepatitis A</td>
<td>2 yrs</td>
<td>27,000</td>
</tr>
<tr>
<td>Varicella 2nd dose</td>
<td>5 yrs</td>
<td>105,000</td>
</tr>
<tr>
<td>Meningococcal</td>
<td>Adolescents</td>
<td>126,000</td>
</tr>
</tbody>
</table>

*Converted to 2003 dollars

*Presented at ACIP meetings 2006-07

Influenza vaccination recommendations — 2007

- Annual vaccination against influenza is specifically recommended for:
 - Persons at increased risk for severe complications (hospitalizations and death) from influenza.
 - Risk groups added as evidence became available — pregnant women, children aged 6-23 months, children with neurologic disorders.
 - “Or at higher risk for influenza-associated clinic, emergency department or hospital visits” (MMWR 2007):
 - Children through 4 years of age.
 - Persons who live with or care for persons at high risk of complications from influenza.
- Routine vaccination is also “permissive” for the general population.

Presented at ACIP meetings 2006-07
Limitations of risk-based recommendations

- The recommendations are complicated.
- Risk groups can be difficult to remember — in 2007, there were 12 specific influenza vaccination target groups.
 - More difficult for health care providers to identify patients by risk than by age.
 - More difficult for patients to self-identify based on risk conditions.
 - Coverage levels among the target groups vary, but in general are low.

Gulf Between Recommendations and Reality

- 220 million persons (73% of the population) should get vaccinated annually
- Fewer than 100 million get vaccinated

*Presented at ACIP meetings 2006-07
Potential Time-Frame for Modifying Influenza Vaccination Recommendations*

- **2007-2008**: Consider expanding recommendations to include school-age children
- **2010-2011**: Consider expansion of recommendations to include household contacts and caregivers of school-aged children
- **2012-2013**: Consider expansion to universal vaccination

*Presented to ACIP meetings 2006-07

Summary: Vaccinating school-age children against influenza*

- **Vaccine supply**: Adequate and improving, although local distribution issues remain problematic.
- **Vaccine safety**: Established, but need for continued vigilance and long-term studies.
- **Cost effectiveness**: Higher than many currently-recommended vaccines, but models do not fully account for potential indirect effects.
- **Disease burden**: Highest rates of influenza, but severe outcomes less common than in older or younger age groups.
- **Vaccine effectiveness**: Effective in reducing influenza illness, and increasing evidence for indirect effects.
- **Feasibility of sustained implementation**: Uncertain, but comprehensive efforts to vaccinate this large cohort are not likely to be established until a recommendation is made.

Based on CDC/CSTE consultation, September 2007.

*Presented at February 2008 ACIP meeting.
2008: Universal pediatric recommendation

Highlights of 2010 Influenza Vaccine Recommendations

- Influenza vaccine recommended for all persons 6 months and older
- Number of doses needed in children 6 months through 8 years
- Licensure of High-Dose Fluzone
Risk factors for complications of or severe illness with 2009 H1N1 virus infection

Healthcare Personnel Influenza Vaccination

- Prevent transmission to patients
 - Transmission of influenza in HC settings occurs; vaccination of patients and HCP reduces risk
 - Vulnerable populations with suboptimal response to vaccine
- Reduce risk that HCP will be infected with influenza
- Maintain critical workforce
- Set an example for the importance of vaccination for every person

New “tools” are needed

• Efficacy
 • Suboptimal, particularly in young children, elderly, immunocompromised

• Limited cross-protection
• Annual administration
• Cumbersome manufacturing process
• Supply and distribution

But translating to policy could be complicated…LAIV vs TIV

Laboratory-confirmed influenza illness by vaccine type, 6-59 months

Efficacy of influenza vaccine in young, healthy college students, 2007-2008

How do we protect children younger than 6 months? Effectiveness of maternal influenza immunization in mothers and infants

- Study participants and design:
 - Bangladesh, 2004-05.
 - Randomized controlled trial.
 - 340 pregnant women received either influenza vaccine or pneumococcal polysaccharide vaccine (control) during third trimester.
 - Follow-up through pregnancy and first 6 months after birth.

- Outcomes:
 - Febrile respiratory illness among infants and mothers.
 - Lab-confirmed influenza among infants.
Influenza vaccine reduced disease in mothers and babies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Episodes</th>
<th>Clinical Effectiveness (95% CI)</th>
<th>Risk Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Influenza Vaccine</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Person-months</td>
<td>870</td>
<td>881</td>
</tr>
<tr>
<td>Infants:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any fever</td>
<td>151</td>
<td>110</td>
<td>-281 (-3.6 to 50.6)</td>
</tr>
<tr>
<td>Temperature >58°C</td>
<td>77</td>
<td>56</td>
<td>-281 (-3.6 to 50.6)</td>
</tr>
<tr>
<td>Diarrheal disease</td>
<td>118</td>
<td>159</td>
<td>-281 (-3.6 to 50.6)</td>
</tr>
<tr>
<td>Clinic visit</td>
<td>92</td>
<td>54</td>
<td>-281 (-3.6 to 50.6)</td>
</tr>
<tr>
<td>Influenza test ordered</td>
<td>79</td>
<td>41</td>
<td>40.7 (29.4 to 64.7)</td>
</tr>
<tr>
<td>Influenza test positive</td>
<td>16</td>
<td>6</td>
<td>42.8 (9.0 to 86.4)</td>
</tr>
<tr>
<td>Mothers:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any fever</td>
<td>77</td>
<td>50</td>
<td>-35.8 (-37.7 to 57.2)</td>
</tr>
<tr>
<td>Temperature >58°C</td>
<td>31</td>
<td>19</td>
<td>45.1 (-9.0 to 70.3)</td>
</tr>
<tr>
<td>Diarrheal disease</td>
<td>60</td>
<td>49</td>
<td>19.3 (-24.6 to 47.8)</td>
</tr>
<tr>
<td>Clinic visit</td>
<td>25</td>
<td>19</td>
<td>24.9 (-43.9 to 60.8)</td>
</tr>
</tbody>
</table>

High-dose influenza vaccine in adults 65 years and over

- A multicenter, randomized, double-blind controlled study was conducted to compare HD vaccine (which contains 60 mcg of HA per strain) with the licensed standard-dose (SD) vaccine (which contains 15 mcg HA per strain) in adults 65 years of age.
- HD vaccine was administered to 2575 subjects, and SD vaccine was administered to 1262 subjects.
- The immunogenicity of HD vaccine was assessed in terms of rates of seroconversion and ratio of GMTs for each virus strain, relative to the values obtained for the SD vaccine.
Table 2. Comparison of responses to high dose (HD) and standard dose (SD) influenza vaccine.

<table>
<thead>
<tr>
<th>Response, by antigen</th>
<th>HD vaccine recipients* (n = 2576)</th>
<th>SD vaccine recipients* (n = 1276)</th>
<th>HAI GMT 95% CI</th>
<th>HAI GMT ratio for HD and SD vaccine, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMTH1N</td>
<td>Day 0: 2963 29.5 (27.4–29.7)</td>
<td>Day 0: 1287 29.4 (27.3–31.1)</td>
<td>1.01 (0.96–1.06)</td>
<td></td>
</tr>
<tr>
<td>GMTH2N</td>
<td>Day 28: 2963 67.3 (63.7–71.1)</td>
<td>Day 28: 1287 67.3 (63.7–71.1)</td>
<td>1.01 (0.96–1.06)</td>
<td></td>
</tr>
</tbody>
</table>

Vaccine efficacy of adjuvanted TIV against all strains and vaccine matched strains in Year 2 (6 to < 72 month old subjects)

Summary

• Influenza causes substantial morbidity and mortality in many different populations; vaccine is cornerstone of influenza prevention

• Vaccine efficacy is only one of many considerations in making policy decisions
 • Burden of disease is critical
 • Absolute as well as relative prevention is important
 • Practical considerations

• The landscape of influenza vaccine development is rapidly evolving; policymakers will also need to be flexible