Cost-effectiveness of Influenza Vaccine

Lisa A. Prosser, PhD, MS Associate Professor University of Michigan

National Influenza Vaccine Summit May 16, 2012

Acknowledgments

Funding for this research project was provided by the Centers for Disease Control and Prevention through the Joint Initiative in Vaccine Economics. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Research Team

- Joseph Bresee
- Carolyn Bridges
- Anthony Fiore
- Charlene Gay
- Acham Gebremariam
- Kara Lamarand
- Martin Meltzer
- Mark Messonnier
- Expert Panel Members

Overview

- Brief introduction to cost-effectiveness analysis
- Cost-effectiveness analysis of influenza vaccination by age and risk group
 - Background
 - Methods
 - Results
 - Conclusions
- Cost-effectiveness evidence & health policy

Cost-effectiveness analysis

- Type of economic evaluation
- Compares the relative costs and outcomes of two or more alternatives
- Can be used by decision makers to assist with resource allocation & policy decisions

Common Misconception

Cost-effective ≠ **Cost saving**

Cost-Effectiveness Ratios

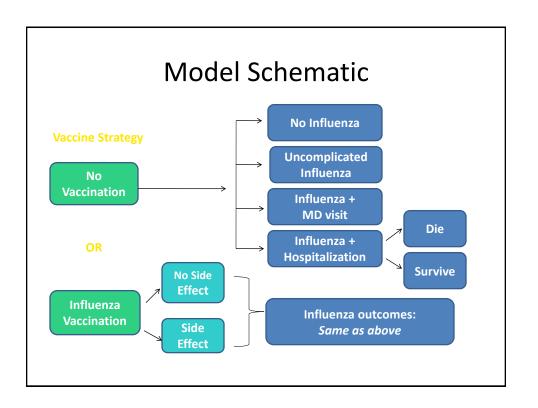
Cost-effectiveness Ratio:

QALY = Quality-adjusted life year

Vaccination Recommendations Advisory Committee on Immunization Practices

Program	Age Group	\$/QALY*	
Rotavirus	Infants	Cost saving	
Pertussis	Adolescents	22,000	
HPV	Adolescent girls	26,000	
Influenza (LAIV)	2-4 yrs, non-high-risk	27,000	
Hepatitis A	2 yrs	30,000	
Varicella 2 nd dose	5 yrs	115,000	
Meningococcal	Adolescents	138,000	

^{*}Converted to 2009 dollars

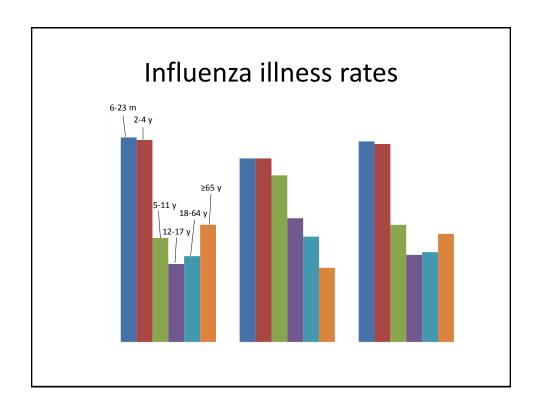

Cost-effectiveness of Seasonal Influenza Vaccination (Post-H1N1)

Objectives

- Evaluate the cost-effectiveness of seasonal influenza vaccination under a universal recommendation
- Incorporate new epidemiology "post-H1N1"
- Include new evidence:
 - Variation in vaccine effectiveness by age
 - Variation in vaccine effectiveness by vaccine type
 - Variation in costs of vaccination by vaccination setting

Methods

- Computer simulation model
 - Compare "vaccination" to "no vaccination"
 - Model inputs based on published and unpublished data, expert panel input
- Target population stratified by age, risk status
- Incremental cost-effectiveness (C/E) analysis
 - Primary endpoint: \$ per quality-adjusted life year
 - Secondary endpoints: health benefits, risks, costs
- Sensitivity analysis


Economic Model: Analysis Plan

- Incremental cost-effectiveness analysis:
 - \$ / influenza episode avoided
 - \$ / hospitalization averted
 - \$ / death averted
 - \$ / QALY gained

Sensitivity Analyses

Model Inputs

- Inputs from both primary and secondary data sources
 - Natural history of influenza in children
 - Effects (reduced incidence rates, adverse events)
 - Costs (direct medical costs, opportunity costs, 2006\$)
 - Adjustment for quality-of-life
- Societal perspective
- Timeframe: One year (but does include losses beyond one year associated with death and long-term sequelae)

Model Inputs: Influenza-related probabilities 18-49 yrs, Non-high-risk

Variable	Base Case Value	Range
Prob. of influenza illness	0.069	0.022 - 0.146
Hospitalizations, per 100,000	15.2	3.7 – 86.4
Deaths from influenza, per million	9.5	6.1 – 13.3

Model Inputs: Influenza-related costs (2010\$) 18-49 yrs, Non-high-risk

Event	Base Case Value	Range
Non-medically- attended influenza	\$3	-
Influenza-related MD visit	\$158	\$155 - 161
Influenza-related hospitalization	\$24,000	\$21,000 – 27,000

Model Inputs: Quality of life adjustments

Influenza-related Event	Quality-adjusted life years (QALYs) lost (95% CI)
Influenza	0.008 (0.003, 0.021)
Influenza-related hospitalization	0.016 (0.006, 0.042)
Severe allergic reaction	0.014 (0.009, 0.022)
GBS	0.011 (0.006, 0.022)

	Settings
MVC	Mass vaccination clinic, including school-based setting
Physician office Setting	Vaccination at the physician office assuming walk-in hours or other streamlined setting

Model Inputs: Vaccination-related costs 18-49 years

Vaccine dose costs	IIV: \$12	
	LAIV: \$18	
Administration costs		
Physician Office	\$24	
Mass Vaccination	\$11	
Recipient time costs		
Physician Office (2h)	\$41	
Mass Vaccination (11m)	\$4	
Adverse event costs	\$2	
Total Vaccination Costs (Range)	IIV: \$42 (29-79)	
(73% in MVC)	LAIV: 49 (35-85)	

Model Inputs: Vaccine effectiveness

	IIV (Range)	LAIV (Range)
5-23 m	0.56 (0.07-0.85)	NA
2-4 y	0.66 (0.31-0.84)	0.87 (0.77-0.92)
5-11 y	0.71 (0.43-0.84)	0.80 (0.38-0.92)
2-17 y	0.72 (0.46-0.85)	0.78 (0.30-0.92)
8-64 y	0.62 (0.33-0.79)	0.61 (0.34-0.76) (18-49 only)
<u>≥</u> 65 y	0.34 (0.14-0.57)	NA

Model Inputs: Vaccination-related adverse events, 18-49 y

	Probability	Range
Systemic reaction	IIV: 0.011	0.0006-0.005
	LAIV: 0.026	0.0009-0.021
Anaphylaxis	1 in 4 million	0-0.0000025
GBS	1 in 1 million	0-0.000002

Results: 18-49 yrs, Non-high-risk Mean outcomes per 1,000 (95% CI)

	Inactivated vaccine	Live attenuated vaccine
Net costs	29,000	38,000
	(21,000-33,000)	(30,000-42,000)
Episodes averted	43 (14-95)	42 (15-91)
Hosps averted	0.1 (0-0.3)	0.1 (0-0.3)
Deaths averted	0.05 (0.02-0.11)	0.05 (0.02-0.11)
QALYs saved	1.6 (0.5-3.7)	1.5 (0.5-3.5)

Cost-effectiveness ratio

= Incremental (or Net) Costs
Incremental QALYs

= \$29,000 1.6 QALYs

≈ \$18,000/QALY gained

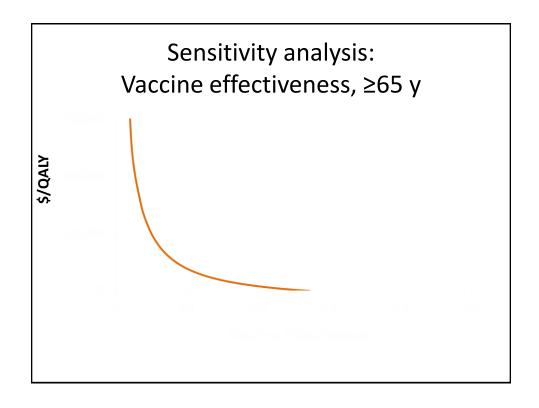
Results: C/E Ratios, Means (95% CI) 18-49 yrs, Non-high-risk

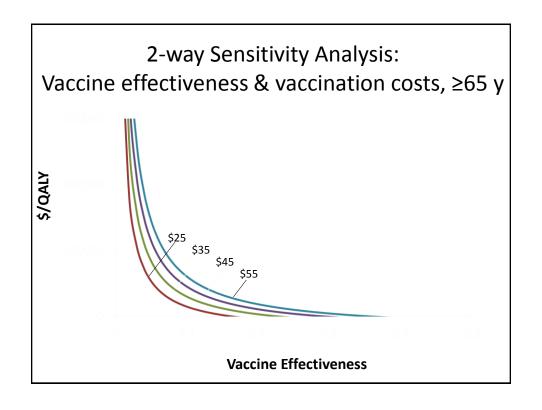
	IIV	LAIV
\$/influenza	\$675	\$910
event	(\$220-2,300)	(\$350-2,900)
\$/hospitalization	\$307,000	\$413,000
	(\$68,000-2,252,000)	(\$101,000-2,881,000)
\$/death	\$575,000	\$774,000
	(\$188,000-1,976,000)	(\$294,000-2,451,000)
\$/QALY	\$18,000	\$25,000
	(\$6,000-67,000)	(\$9,000-86,000)

Results: Mean C/E Ratios, \$/QALY

	IIV, High Risk	IIV, Non-high risk	LAIV, Non-high risk
6-23 mos	CS	\$9,000	NA
2-4 years	\$150	\$6,000	\$5,000
5-11 years	\$900	\$7,000	\$7,000
12-17 years	\$900	\$7,000	\$7,000

^{*}Base-case assumes all children under 5 to be vaccinated in physician office; mix of settings for children aged 5 and older; CS = Cost Savings


Results: Mean C/E Ratios*, \$/QALY


	IIV, High Risk	IIV, Non-high risk	LAIV, Non-high risk
18-49 years	\$2,000	\$18,000	\$25,000
50-64 years	CS	\$20,000	NA
≥65years	CS	NA	NA

Results: Sensitivity Analyses

- Cost-effectiveness results not sensitive to:
 - Probability of vaccine adverse events
 - Costs of influenza events
- Results sensitive to:
 - Influenza illness attack rate
 - Vaccine effectiveness
 - Costs of vaccination/vaccination setting

^{*}Assumes mix of vaccination settings; CS = Cost Savings

Limitations

- Effects of indirect protection not considered
- Limited data regarding some key assumptions
- Quality adjustments for adverse events may not reflect increased value associated with causing harm

Summary: Role of Cost-effectiveness Evidence

- Rarely used for global coverage decisions
- More often used for identifying target populations
- · Focus on sensitivity analysis

Policy Implications – Seasonal Influenza Vaccination

- Cost-effectiveness of influenza vaccination varies by
 - age and risk status
 - vaccination setting
- Cost-effectiveness evidence supports universal recommendation
- Lower-cost settings can substantially improve efficiency of vaccination

Thank You